
JET PROPULSION LABORATORY

NOTIFICATION OF CLEARANCE

10/30/02

TO : H. Zima

FROM : Logistics and Technical Information Division

SUBJECT: Notification of Clearance - CL#O2-2786

The following title has been cleared by the Document Review Services,
Section 274, for public release, presentation, and/or printing
in the open literature:

The Cascade Programming and Execution Model: A First
Approach

This clearance is issued for the full paper and is valid for
U.S. and foreign release.

Clearance issued by &&-- Adrian Se ra

Document Review Services
Section 644

(Over)

~

If STI discloses an invention
Check box and send to SIAMO 1

(dare)

COMMENTS

THIS DOCUMENT MAY BE RELEASED ON STRATEGIC INTELLECTUAL ASSETS MANAGEMENT OFFICE (SIAMO) SIGNATURE DATE

USML CATEGORY
NUMBER (ITAR) lm. \ \

0 All documents issued under the following contractlgrantlproject number may be processed as checked in Sections I I and 111.
This blanket availability authorization is granted on (date)
The blanket release authorization granted on (date)
0 is RESCINDED - Future documents must have individual availability authorizations.
0 is MODIFIED - Limitations for all documents processed in the STI system under the blanket release should be changed to conform to blocks as

Check one: 0 Contract 0 Grant 0 Project Number

checked in Sections II and 111.

CCL NUMBER, ECCN
NUMBER (EAR)

SIGNATURE MAIL STOP DATE

V. PROJECT OFFICEWIECHNICAL MONfTOWDlVlSlON CHIEF REVIE& OF I l2&OUGH V 4'3, t I 6 ?'I*

0 Approval for distribution as marked above Not appoved

NAME OF PROJECT OFFICER OR TECH. MONITOR MAIL STOP SIGNATURE DATE

0 Public release is approved 0 PubGIease notpproved due to export control 0 Export-controlled limitation isnot applicable
0 Export-controlled limitation is approved c] Export-controlled limitation (ITAWEAR marked in Section 1 1 1 is assigned to this document)

USML CATEGORY CCL NUMBER, ECCN JPL EXPORT CONTROL ADMIN. REPRESENTATIVE SIGNATURE DATE
NUMBER (ITAR) NUMBER (EAR)

I
COMMENTS

1 COMMENTS LAUNCH APPROVAL
0 OFFICE OF COMMUNICATIONS AND EDUCATION
0 GENERAL COUNSEL

0 Budgetary/Cost Data
Vendor Data
Copyrights . .

SIGNATURE DATE
0 Other
OTHER

~

&lic release is approved for US. and foreign distribution

COMMENTS

Public release is not approved

MAIL STOP DATE

11 \-? Z O L
W -

0 Obtained published version Obtained final JPL version Date

PAGE 2 JPL 1330-5 R 3/02 W

See page 3 for instructions for completing this form.

In Page 1 of 1

To: docrev@jpl.nasa.gov
Subject: Authorization for External Release

Hi!

Attached are the document and form 1330-S for your review and release for Hans Zima's
presentation at UC Santa Barbara on next Monday, Oct. 28.

Your approval is appreciated!

Winnie Wang <winnie.p.wang@jpl.nasa.gov>
Engineering and Communications Infrastructure/Sec. 366
Phone: 81 8/354-9856 -*- Fax: 81 8/393-0479 -*- MS: 126-256

socal. 02a. ppt

Cascade-Hans. tif

Printed for Document Review <docrev@mail2.jpl.nasa.gov> 10/24/2002

mailto:docrev@jpl.nasa.gov

The Cascade Programming and
Execution Model: A First Approach

David Callahan
Cray lnc., Seattle, Washington

and

NASA Jet Propulsion Laboratory, Pasadena, California

Hans P. Zima

Southern California Workshop on Parallel and Distributed
Processing and Architecture

Santa Barbara, California
October 28, 2002

. . .

+ 1 The DARPA HPCS Program

+ 2 The Cascade Project

+ 3 Cascade Hardware Architecture

+ 4 Basic Programming Model

+ 5 Extended Programming Model

+ 6 Irregular and Dynamic Applications

+ 7 Research Issues . .

+ 8 Conclusion
a L1

High Productivity
Computing Systems

Goals:
> Provide a new generation of economically viable high productivity computing

systems for the national security and industrial user community (2007 - 2010)
_I ~I " ___ x -"XI- - ~ I - ~ " --

Impact:
0 Performance (efficiency): critical national security

0 Productivity (time-to-solution)
0 Portability (transparency): insulate research and

operational application software from system
0 Robustness (reliability): apply all known techniques

to protect against outside attacks, hardware faults,
& programming errors

applications by a factor of 1OX to 40X

HPCS Program Focus Areas

0 Intelligence/surveillance, reconnaissance, cryptanalysis, weapons analysis, airborne contaminant
modeling and biotechnology

The Casca

+byear Concept Study, July 2002-June 2003

+Led by Cray Inc. (Burton Smith)

Partners:
C alt ec h/ JPL
University of Notre Dame

e . Stanford University . .$:.- - % I

Cascade: Key Elements
L

+Hierarchical architecture: two levels of processing elements

+Shared address space

+Uniform (UMA) as well as locality-preserving (NUMA)

+Smart memory with lightweight threads

+Hybrid progr amming/execution paradigm

+Fine grain synchronization

+Recovery “on-t he- fly’’

r .

addressing modes

. . , I

. I ..” a . . . ,
i . I . ,

PIM-Based Smart Memory

module module

I I =

module module

I

Processor-in-Memory

+
+
+
+
+ Elimination of data caches

+ Multithreading support

Integration of CMOS processor logic/DRAM memory

Replication of PIMnodes across module

Huge improvement of on-chip bandwidth

Eficient memory operations and wide-word procqssing

PIM module (chip)

C
0

PIM node

Cascade 2007 - 1 PetaFlops

+ 16K nodes
+ Multithreaded Processor

- 8 GHz clock rate
- 8-way issue from SMT vectors
- 64 Gflops peak

+PIM array
- 8 chips
- 1 Gigabyte per module
- 16 GigaFlops peak per chip

Address Translation

+The address space of an application may contain three
different kinds of “segments”: (1) globally hashed, (2) locally
hashed, and (3) non-hashed

+Segments consist of a sequence of virtual locales, each of
which containing a set of locally translated pages

+Global hashing: consecutive blocks spread “randomly” across
the whole address space

+Some of memory can be locally hashed, with consecutive
blocks spread “randomly” across one locale

+Some of memory can be non-hashed, with consecutive blocks
located within a single memory chip

Lightweight Threads

+Lightweight threads (LWT) in the memory exploit

+PIM technology supports LWTs effectively

+LWT are spawned by sendingparcels to memory

spatial locality by migrating to the data they refer to

- Spawning and migration overheads must be
minimized

- In-memory operations are specially supported

+The compiler maps the temporally local loops to
Heavyweight threads (HWTs), executed on the node
processors, and the others to LWTs

m

Q
)

Q
)

E

1

E" a k W

0

k

PI
h

0

w

9
,
z

m

aJ 1
.

.

k 0

m

I

0

a4 a w

Q
)

CE
I

Q
)

W

m

I

5
m

I

k

0

PI
pi
1

m

m

m

Q
)

H
'

W
 a

0

m

Q
)

CIS E" E

0

.. I

7

0

Q
)

b4

a
 PI

A

0

1

Q
)

m

1

m

Q
)

a

.
r
l

I
w

Base Parallel Model

Unbounded lightweight threads
- Explicit thread creation
- Special constructs such as CCdoall” for data parallelism

Flat shared memory
Explicit synchronization

P Weak memory semantics: communication must be protected via
synchronization

.

4

h

9

a
 Q

)

* 0

k

.
r
l

E" Q
)

9

0

E

E

a

0

c
,

2 0

a

0

a

a

.e(
c
,

.
r
(

M

h

0

E

Q
)
k

k

1

0

E

0

0

b
a
E

Q
)
k

0

E

.
r
l

z .
r
(

Elements of the Extended Programming Model

+ Abstract architecture specification

+ Distribution of data structures to
memory@rocessing elements

+Data alignment

+ Data/thread affinity

v

ontrol of these features m2ust be dynamic

Distribution and Alignment

H
"

Z
E

3 u A

*
Y

'k

P I
I

Q
)

Q
)

L
E

Column-block distribution of a 2D-matrix

easily handled io fhe

A Multiblock Grid Collection

~ *define partition of abstract locale set
adistribute grids to locale subsets
aprocess grids in parallel across locale
subsets
@run solvers in parallel on individual
locale subsets

Source: C.B.Allen, Bristol, UK

Example: Crash Simulation

-
Source: Engineering Systems International (ESI)

Example: CFD on Irregular Mesh

Source: Dimitri Mavriplis, ICASE, NASA Langley Research Center

Requirements for Irregular and Dynamic Applications

+ General data structures
+ General methods for distributing and aligning

data
(regular distributions may not reflect locality in physical space)

+ General mechanisms for datakhread affinity
(allow a dynamic mapping of thread groups to memory segments
associated with a data partition)

+ Dynamic manipulation of data distributions,
alignments, and affinity ‘must ,be efficient
(apart @om adaptive problems such as SAMR dynamic redistributions are
even needed for regular problems such as ADO

Software Infrastructure Components

The user cannot be expected to fully control the system
operation at a low level of abstraction, as in today’s HPC
architectures (e.g., MPI). As a consequence, a set of
sophisticated tools for the following functionalities is
required:

+ Automatic distribution

+ Directed distribution (a la High Performance Fortran)

+ Performance analysis and prediction

+ Automatic performance tuning

+ High-level debugging

Performance-Guided Offline Tuning

end of
tuning cycle

execution on
target machine

Feedback-Directed Optimization

+ Performance-guided off-line tuning is just a point in an
optimization continuum

+ Other approaches include
- Runtime code-generation (inspector/executor)
- On-line optimization in software (Jalapeno,HotSpot)
- On-line optimization in hardware (trace caches, MTA

- 7 < - ,

hotspot strategy)

+ Software approaches can use introspection for this purpose

I 1 I Introspection and Its Use for Optimization and Execution Control
I I

......' execution proper

A
Performance analysis agents

Jl3dMNiWd-S

...
Restructuring\ Invariant checking agents

\ ugenm

Conclusion

+ Cascade is a hierarchical architecture offering a hybrid
UMA/NUMA paradigm

+ Applications must be parallelized across multiple levels: most
of this work must be done by compiler and runtime system, in
a user-transparent way

+ Leverage of MTA compiler technology and existing NUMA
compilation technology is a key to the success of this effort

+ Intelligent tools are needed to deal with issues such as
performance-guided program restructuring (offline/online)

+ Efficient porting of MPI legacy codes will likewise require a
sophisticated transformation system with insight into the
semantics of the original program (or significant user input)

